Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

...

The final script might look like the following:

Code Block
languagepy
import sys
from awsglue.transforms import *
from awsglue.utils import getResolvedOptions
from pyspark.context import SparkContext
from awsglue.context import GlueContext
from awsglue.job import Job

def MapRecord(rec):
    rec["month"] = str(rec["month"]).zfill(2)
    rec["day"] = str(rec["day"]).zfill(2)
    return rec

## @params: [JOB_NAME]
args = getResolvedOptions(sys.argv, ['JOB_NAME'])

sc = SparkContext()
glueContext = GlueContext(sc)
spark = glueContext.spark_session
job = Job(glueContext)
job.init(args['JOB_NAME'], args)
## @type: DataSource
## @args: [database = "devbackfill", table_name = "filedownloadsbackfill", transformation_ctx = "datasource0"]
## @return: datasource0
## @inputs: []
datasource0 = glueContext.create_dynamic_frame.from_catalog(database = "devbackfill", table_name = "filedownloadsbackfill", transformation_ctx = "datasource0")
## @type: Map
## @args: [frame = "datasource0", f = "MapRecord"]
## @return: mapped_datasource
## @inputs: [fram = datasource0]
mapped_datasource =  Map.apply(frame = datasource0, f = MapRecord, transformation_ctx = "mapped_datasource")
## @type: ApplyMapping
## @args: [mapping = [("userid", "long", "userid", "long"), ("timestamp", "long", "timestamp", "timestamp"), ("projectid", "long", "projectid", "long"), ("filehandleid", "long", "filehandleid", "string"), ("associatetype", "string", "associatetype", "string"), ("associateid", "string", "associateid", "string"), ("stack", "string", "stack", "string"), ("instance", "string", "instance", "string"), ("year", "string", "year", "string"), ("month", "string", "month", "string"), ("day", "string", "day", "string")], transformation_ctx = "applymapping1"]
## @return: applymapping1
## @inputs: [frame = mapped_datasource]
applymapping1 = ApplyMapping.apply(frame = mapped_datasource, mappings = [("userid", "long", "userid", "long"), ("timestamp", "long", "timestamp", "timestamp"), ("projectid", "long", "projectid", "long"), ("filehandleid", "long", "filehandleid", "string"), ("associatetype", "string", "associatetype", "string"), ("associateid", "string", "associateid", "string"), ("stack", "string", "stack", "string"), ("instance", "string", "instance", "string"), ("year", "string", "year", "string"), ("month", "string", "month", "string"), ("day", "string", "day", "string")], transformation_ctx = "applymapping1")
## @type: ResolveChoice
## @args: [choice = "make_struct", transformation_ctx = "resolvechoice2"]
## @return: resolvechoice2
## @inputs: [frame = applymapping1]
resolvechoice2 = ResolveChoice.apply(frame = applymapping1, choice = "make_struct", transformation_ctx = "resolvechoice2")
## @type: DropNullFields
## @args: [transformation_ctx = "dropnullfields3"]
## @return: dropnullfields3
## @inputs: [frame = resolvechoice2]
dropnullfields3 = DropNullFields.apply(frame = resolvechoice2, transformation_ctx = "dropnullfields3")
## @type: DataSink
## @args: [connection_type = "s3", connection_options = {"path": "s3://dev.log.sagebase.org/fileDownloads/records"}, format = "parquet", transformation_ctx = "datasink4"]
## @return: datasink4
## @inputs: [frame = dropnullfields3]
datasink4 = glueContext.write_dynamic_frame.from_options(frame = dropnullfields3, connection_type = "s3", connection_options = {"path": "s3://dev.log.sagebase.org/fileDownloads/records", "partitionKeys": ["year", "month", "day"]}, format = "parquet", transformation_ctx = "datasink4")
job.commit()
  1. Run the ETL job :)