...
Parameters: euclidean distance, hierarchical clustering, complete linkage, 10000 bootstraps (pvclust library)
Hinoue data: 125 tumor patients, batch removed, M value, remove 5060 "null probes" identified from the series matrix. Take 10% the most variable probes. Pvclust to identify cluster stability. Parameters: euclidean distance, hierarchical clustering, complete linkage, 10000 bootstraps
The best results I can get is 69 to 83 AU value for cluster stability even after 10,000 bootstraps. Does it mean that the clusters are weak and they just accepted it as is?
ConsensusCluster plus with the same parameters as pvlcust above
Will using a different package make any difference? Use ConsensusClusterPlus package with the same parameters as pvclust. Hierarchical clustering, evaluate 20 clusters, use 80% of the data for bootstrapping. They claimed that the identified 4 clusters.
...
- Carefully identify the probes, remove the from the raw data (5060 + ~800).
- Create two datasets: batch only normalized (125 tumor patients) and gender,age normalized (no need to remove batch since they all came from a single batch; 100 patients).
- Repeat ConsensusClusterPlus with the most variable probes (HC, complete linkage, euclidean distance). Use 10% of the original probe number as described in the Sweave document. They followed the vignette directly.
- Repeat ConsensusClusterPlus using K-means, K=2:6, Pearson correlation. Use 10% of the original probe number as described in the Sweave document.Batch only normalized, HC, euclidean distance.
ConsensusClusterPlus, XY probes removed, hierarchical/euclidean
Batch removed
May be there are like 5 or 6 clusters but not 4. It definitely doesn't look the the clusters identified in the paper.
Gender and age adjusted, HC, euclidean distance.
This looks significantly worse.
Final attempt:
ConsensusClusterPlus, K
-means
clustering, pearson correlation
and the seed value provided in the package.Batch removed :(125 patients)
Code Block | ||
---|---|---|
| ||
> icl[["clusterConsensus"]] k cluster clusterConsensus [1,] 2 1 0.8790997 [2,] 2 2 0.8825873 [3,] 3 1 0.8900365 [4,] 3 2 0.8615545 [5,] 3 3 0.8763479 [6,] 4 1 0.7145161 [7,] 4 2 0.8060535 [8,] 4 3 0.9781181 [9,] 4 4 0.9889430 [10,] 5 1 0.8289404 [11,] 5 2 0.7577152 [12,] 5 3 0.8221909 [13,] 5 4 0.7363796 [14,] 5 5 0.9454712 [15,] 6 1 0.8789223 [16,] 6 2 0.7593188 [17,] 6 3 0.7090342 [18,] 6 4 0.7150963 [19,] 6 5 0.9857516 [20,] 6 6 0.9189523 |
I
tried to correlate clusters (Summary table for association with clinical variable for K=2,3 and K=4) with age and gender. Looks that the clusters don't correlate with age at all but have some correlation with gender.
K = 4:
Code Block | ||
---|---|---|
| ||
> kruskal.test(tumorMeta$Age,consClass4)
Kruskal-Wallis rank sum test
data: tumorMeta$Age and consClass4
Kruskal-Wallis chi-squared = 4.9015, df = 3, p-value = 0.1792
> chisq.test(tumorMeta$Gender,consClass4)
Pearsons Chi-squared test
data: tumorMeta$Gender and consClass4
X-squared = 14.7676, df = 3, p-value = 0.002026 |
Age distribution among clusters:
Test for association with mutation status:
Code Block | ||
---|---|---|
| ||
> chisq.test(k,tumorMeta$BRAF_mutation)
Pearson's Chi-squared test
data: k and tumorMeta$BRAF_mutation
X-squared = 95.1974, df = 3, p-value < 2.2e-16
Warning message:
In chisq.test(k, tumorMeta$BRAF_mutation) :
Chi-squared approximation may be incorrect
> chisq.test(k,tumorMeta$KRAS_mutation)
Pearson's Chi-squared test
data: k and tumorMeta$KRAS_mutation
X-squared = 26.6428, df = 3, p-value = 6.995e-06
Warning message:
In chisq.test(k, tumorMeta$KRAS_mutation) :
Chi-squared approximation may be incorrect
> chisq.test(k,tumorMeta$TP53_mutation)
Pearson's Chi-squared test
data: k and tumorMeta$TP53_mutation
X-squared = 12.1586, df = 3, p-value = 0.006859 |
K = 3:
Code Block | ||
---|---|---|
| ||
> kruskal.test(tumorMeta$Age,consClass3)
Kruskal-Wallis rank sum test
data: tumorMeta$Age and consClass3
Kruskal-Wallis chi-squared = 2.4866, df = 2, p-value = 0.2884
> chisq.test(tumorMeta$Gender,consClass3)
Pearsons Chi-squared test
data: tumorMeta$Gender and consClass3
X-squared = 5.9141, df = 2, p-value = 0.05197 |
So it is not very correlated with age and it is somewhat correlated with gender.
Test for association with mutation status:
Code Block | ||
---|---|---|
| ||
> k<-resultsK[[3]][["consensusClass"]]
> chisq.test(k,tumorMeta$BRAF_mutation)
Pearson's Chi-squared test
data: k and tumorMeta$BRAF_mutation
X-squared = 50.5952, df = 2, p-value = 1.031e-11
Warning message:
In chisq.test(k, tumorMeta$BRAF_mutation) :
Chi-squared approximation may be incorrect
> chisq.test(k,tumorMeta$KRAS_mutation)
Pearson's Chi-squared test
data: k and tumorMeta$KRAS_mutation
X-squared = 6.7096, df = 2, p-value = 0.03492
> chisq.test(k,tumorMeta$TP53_mutation)
Pearson's Chi-squared test
data: k and tumorMeta$TP53_mutation
X-squared = 25.1538, df = 2, p-value = 3.451e-06 |
Gender and age are removed, ConsensusClusterPlus, K means, Pearson correlation:,4,5,6 (only batch is removed)
K | 2 | 3 | 4 | 5 | 6 |
---|---|---|---|---|---|
Age | 0.78 | 0.88 | 0.7 | 0.6345 | 0.444 |
Gender | 0.12 | 0.05 | 2.02e-03 | 5.35e-03 | 8.097155e-03 |
Rectal/colon | 0.0016 | 4.74e-04 | 4.44e-03 | 7.41e-03 | 2.2e-03 |
Tumor stage | 0.36 | 0.43 | 0.23 | 0.3 | 0.58 |
BRAF | 1.33e-05 | 1.03e-11 | 1.67e-20 | 1.01e-19 | 5.15e-19 |
KRAS | 3.87e-03 | 0.04 | 6.7e-06 | 1.22e-04 | 5.97e-06 |
KRAS type | 1.97e-02 | 0.24 | 7.14e-03 | 1.59e-02 | 2.32e-03 |
TP53 | 0.96 | 3.45e-06 | 6.86e-03 | 1.75e-03 | 1.26e-03 |
MLH1 mutation | 1.26e-04 | 5.11e-10 | 1.45e-20 | 8.96e-20 | 4.12e-19 |
ConsensusClusterPlus, K means, Pearson correlation
Age/gender removed, 100 patients
Cluster consensus:
Code Block | ||
---|---|---|
| ||
> icl[["clusterConsensus"]] k cluster clusterConsensus [1,] 2 1 0.9008927 [2,] 2 2 0.9411635 [3,] 3 1 0.8680856 [4,] 3 2 0.8760303 [5,] 3 3 0.7333630 [6,] 4 1 0.7745014 [7,] 4 2 0.7901681 [8,] 4 3 0.8024310 [9,] 4 4 0.8247401 [10,] 5 1 0.9153414 [11,] 5 2 0.8141924 [12,] 5 3 0.6573712 [13,] 5 4 0.6708655 [14,] 5 5 0.6319631 [15,] 6 1 0.8695192 [16,] 6 2 0.8568005 [17,] 6 3 0.7128842 [18,] 6 4 0.7407073 [19,] 6 5 0.5585342 [20,] 6 6 0.7426816 |
Test for association of clusters with mutation status. K = 2.
Code Block | ||
---|---|---|
| ||
#w is the data frame with clinical information for 100 tumor patients
> chisq.test(k,w$BRAF_mutation)
Pearson's Chi-squared test with Yates' continuity correction
data: k and w$BRAF_mutation
X-squared = 15.2964, df = 1, p-value = 9.189e-05
> chisq.test(k,w$KRAS_mutation)
Pearson's Chi-squared test with Yates' continuity correction
data: k and w$KRAS_mutation
X-squared = 5.0882, df = 1, p-value = 0.02409
> chisq.test(k,w$TP53_mutation)
Pearson's Chi-squared test with Yates' continuity correction
data: k and w$TP53_mutation
X-squared = 0.12, df = 1, p-value = 0.729 |
K | 2 | 3 | 4 | 5 | 6 |
---|---|---|---|---|---|
Tumor stage | 0.36 | 0.44 | 0.66 | 0.83 | 0.76 |
Rectal/colon | 8.69e-03 | 1.68e-02 | 6.12e-02 | 0.15 | 0.13 |
BRAF | 9.18e-05 | 1.46e-12 | 1.81e-12 | 1.16e-13 | 1.63e-10 |
KRAS | 2.41e-02 | 3.36e-02 | 5.51e-02 | 2.53e-04 | 3.32e-03 |
KRAS type | 6.98e-02 | 3.705241e-01 | 0.55 | 9.23e-03 | 0.46 |
TP53 | 0.72 | 5.90e-03 | 4.15e-03 | 1.40e-02 | 2.14e-02 |
MLH1 methyl. | 9.19e-05 | 1.46e-12 | 2.01e-10 | 1.03e-13 | 1.63e-10 |