...
Table of Contents
Table of Contents |
---|
Goals
1) Make the Sage coexpression software runnable by any data analyst in R.
Document the analysis steps, package functions, and adjustable parameters. Write start-to-finish vignette(s) having sufficient detail to guide a new analyst through the software, including making parameter settings and other intermediate decisions. Refactoring software to enhance readability and/or to make decision points and adjustable parameters explicit, is within scope for this goal.
2) Clearly explain the methodology underlying the coexpression algorithms.
This includes contrasting the Sage algorithms with the separately published “WGCNA” algorithms and explaining the rationale for the differences and the decision process for choosing which to use.
3) Make the Sage coexpression software publicly available.
The code must be available through a standard R distribution channel (CRAN or Bioconductor). An option is to merge Sage-specific algorithms or steps into WGCNA (if the two are sufficiently overlapping).
4) Make the Sage coexpression software perform well, on commonly available hardware.
Currently, special high capacity hardware is required to run the Sage coexpression software on commonly encountered data set sizes. The goal is to optimize the code to run on commonly available hardware, at a minimum the code should be runnable on the 68GB, quad core servers available through Amazon Web Services. Ideally, the code would be runnable on a “heavy” Sage laptop (8 GB total RAM).
Strategy
The steps for Sage Coexpression are:
...
Goals, Revisited
Goal | How we met it |
---|---|
Make the Sage coexpression software runnable by any data analyst in R | Created easy to use, documented R package. (TODO: training class) |
Clearly explain the methodology underlying the coexpression algorithms. | Included links to literature in the R package documentation. |
Make the Sage coexpression software publicly available. | TBD (see below) |
Make the Sage coexpression software perform well, on commonly available hardware. | Used UCLA's accelerated algorithms. Accelerated the 'intra-module statistics' computation. Profiled datasets of up to 27,000 genes on inexpensive, high capacity cloud resources. |
...