Wiki Markup |
---|
h5. Batch vs clinical traits Number of batches is 12. Correlation between batch and center: {code:collapse=true}table(two,batchID) batchID two 0689 0848 0979 1096 1198 1440 1551 1633 1818 1871 1947 2043 18 0 0 12 2 0 2 0 2 0 0 0 0 21 13 0 0 0 0 0 0 4 0 0 0 0 22 9 0 0 0 6 3 0 12 2 0 2 0 33 0 0 0 0 4 5 0 0 1 0 1 0 34 0 6 0 0 0 2 0 1 7 1 1 0 37 0 0 2 6 1 0 0 1 0 0 0 0 39 0 0 0 0 0 12 0 0 4 0 0 0 43 0 3 2 0 0 0 2 1 4 0 1 0 46 0 0 5 0 0 0 0 0 2 0 0 0 51 0 0 0 3 0 0 0 0 0 0 0 1 56 1 0 0 0 0 0 0 2 2 0 0 6 60 0 20 0 0 1 0 0 0 1 2 0 2 63 0 0 0 0 0 2 0 0 1 0 4 0 66 0 18 15 0 6 0 0 0 0 0 0 0 70 0 0 0 0 0 0 0 0 2 0 0 0 77 0 0 0 0 0 0 0 0 0 0 4 10 79 0 0 0 0 0 0 0 0 0 0 1 0 85 0 0 0 0 0 0 0 0 3 0 1 0 90 0 0 0 0 0 0 0 0 0 0 1 0 92 0 0 0 0 0 0 0 0 0 0 0 2 94 0 0 0 0 0 0 0 0 0 0 1 0 96 0 0 0 0 0 0 0 0 0 0 0 2 98 0 0 0 0 0 0 0 0 0 0 0 1{code} Significant batch/clinical traits correlations (complete list can be found [here|^BatchClinicalInfoCorrelationsLUSC.txt]): {csv}LUSC,DataType,NumberOfNAs,Test,Pvalue tumor_stage,factor,27,Pearson's Chi-squared test,8.78E-14 year_of_initial_pathologic_diagnosis,integer,23,Kruskal-Wallis rank sum test,7.95E-12 days_to_form_completion,integer,30,Kruskal-Wallis rank sum test,1.48E-09 primary_tumor_pathologic_spread,factor,23,Pearson's Chi-squared test,1.96E-09 distant_metastasis_pathologic_spread,factor,29,Pearson's Chi-squared test,3.77E-05 days_to_last_followup,integer,42,Kruskal-Wallis rank sum test,7.68E-05 vital_status,factor,23,Pearson's Chi-squared test,2.37E-03 year_of_tobacco_smoking_onset,integer,116,Kruskal-Wallis rank sum test,3.12E-03 year_of_tobacco_smoking_cessation,integer,88,Kruskal-Wallis rank sum test,5.84E-03 days_to_last_known_alive,integer,75,Kruskal-Wallis rank sum test,7.37E-03 residual_tumor,factor,46,Pearson's Chi-squared test,2.00E-02 lymphnode_pathologic_spread,factor,23,Pearson's Chi-squared test,5.48E-02 age_at_initial_pathologic_diagnosis,integer,30,Kruskal-Wallis rank sum test,9.24E-02 days_to_birth,integer,30,Kruskal-Wallis rank sum test,9.73E-02{csv} h5. Batch vs survival Again, for this type of cancer clinical traits file contains days to last known alive but it has more NAs than days to the last follow up so I will use the latter for construction of the survival object. !KaplanMeierCurveLUSC.png|thumbnail! !SurvivalByBatchLUSC.png|thumbnail! {code:collapse=true}Call: coxph(formula = survivalObject ~ batchVector) n= 223, number of events= 92 coef exp(coef) se(coef) z Pr(>|z|) batchVector0848 -0.14217 0.86748 0.37975 -0.374 0.70813 batchVector0979 -0.23685 0.78911 0.42661 -0.555 0.57877 batchVector1096 1.66699 5.29619 0.60925 2.736 0.00622 ** batchVector1198 -0.13837 0.87077 0.42245 -0.328 0.74325 batchVector1440 -0.25689 0.77345 0.38754 -0.663 0.50741 batchVector1633 0.27021 1.31025 0.37760 0.716 0.47423 batchVector1818 -0.21253 0.80853 0.46395 -0.458 0.64688 batchVector1947 -0.05172 0.94959 0.48598 -0.106 0.91524 batchVector2043 0.06161 1.06355 1.03684 0.059 0.95261 --- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 exp(coef) exp(-coef) lower .95 upper .95 batchVector0848 0.8675 1.1528 0.4121 1.826 batchVector0979 0.7891 1.2672 0.3420 1.821 batchVector1096 5.2962 0.1888 1.6046 17.481 batchVector1198 0.8708 1.1484 0.3805 1.993 batchVector1440 0.7735 1.2929 0.3619 1.653 batchVector1633 1.3102 0.7632 0.6251 2.746 batchVector1818 0.8085 1.2368 0.3257 2.007 batchVector1947 0.9496 1.0531 0.3663 2.462 batchVector2043 1.0636 0.9402 0.1394 8.116 Rsquare= 0.041 (max possible= 0.973 ) Likelihood ratio test= 9.36 on 9 df, p=0.4044 Wald test = 12.53 on 9 df, p=0.1849 Score (logrank) test = 15.53 on 9 df, p=0.07747 {code} On overall, correlation of batch with survival is not significant. There is one batch (1096) that seems to be somewhat more involved and it has only 11 patients. When I removed all patients from that batch no other batches showed completely insignificant correlation with survival. h5. DNA methylation After fixing the inconsistencies in the concentration column (I had 0.13 ug/uL and .13 ug/uL and like for all other concentrations), converting concentration and plate_column to factors here is the summary of the technical variables: {code:collapse=true} > summary(tech) batchID amount concentration plate_column plate_row 0689:22 13.3 uL:97 0.13 ug/uL:11 1:37 A :19 0848:46 26.7 uL:36 0.14 ug/uL:35 2:35 B :19 0979:36 0.15 ug/uL:59 3:26 C :18 1096:11 0.16 ug/uL:23 4:11 D :16 1198:18 0.17 ug/uL: 5 5:16 G :16 6: 8 E :15 (Other):30 shortDay 10-3-2010 :46 14-7-2010 :11 18-11-2009:22 30-8-2010 :18 5-5-2010 :36 {code} Correlation of the first 6 PCs with the tech variables: {code:collapse=true} > x batchID amount concentration plate_column plate_row shortDay V1 1.219915e-14 1.512302e-15 0.22695068 0.004764525 0.5279767 1.219915e-14 V2 1.906561e-01 4.091184e-01 0.96296059 0.292069252 0.1656324 1.906561e-01 V3 7.464626e-02 6.984062e-02 0.22476713 0.467718779 0.5705236 7.464626e-02 V4 2.670836e-01 7.040891e-01 0.78009461 0.638345228 0.2242532 2.670836e-01 V5 5.721394e-01 7.689742e-01 0.42172107 0.348612502 0.6017037 5.721394e-01 V6 2.122370e-13 9.075951e-02 0.07250977 0.015916359 0.7132870 2.122370e-13 {code} Start by removing the batch: |
Page Comparison
General
Content
Integrations
App links