Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

Package Comparison Details, by dataset

Cranio Dataset

Comparing the Sage code base to the UCLA-based package, we see a difference in the selection of the 'soft threshold' (beta).  The former picked a value of 4.0 and the latter 4.5.  Both packages save the details of the optimization process:This is the output from the UCLA algorithm:):

Sage power table / UCLA power table  (The optimum chosen by each is highlighted)

 

Power

p-value

Adj R^2

Truncated Adj R^2

slope

mean(k)

median(k)

max(k)

 

 

Power

SFT.R.sq

slope

truncated.R.sq

mean.k.

median.k.

max.k.

1

1

-1

0.707

0.991

1.18

700

700

1120

 

1

1

0.736501290349614 737

1.13578366310746 14

0.994431751751329

699.572313034948

699.648966320864

1116.02918233716 .994

700

700

1120

2

1.5

-1

0.231

0.969

0.332

440

424

840

 

2

1.5

0.251519543919548 252

0.297533023504088 298

0.97937139813633

439.899479746776

423.612496822198

840.47949387766 979

440

424

840

3

2

-1

0.0114

0.903

-0.136

296

269

668

 

3

2

0.119730110387487 12

-0.163692811558184 164

0.91713459200463

295.588422458769

268.94730085273

667.945223302198 917

296

269

668

4

2.5

-1

0.523

0.921

-0.444

209

178

549

 

4

2.5

0.622896623436384 623

-0.491086993626836 491

0.900740857562872

208.537727229792

177.79413914117

549.155319758776 901

209

178

549

5

3

-1

0.749

0.914

-0.66

153

120

463

 

5

3

0.788460807596207 788

-0.68266797986082 683

0.904

153

120

463

6

3.5

-1

0.903728452209731 819

152 0.800323593864 892

120.243286725551

463.29082261878 -0.798

115

83.7

399

 

6

3.5

0.863229344305799 863

-0.85737992139182 857

0.889320106067623 889

115 .448359595823

83.7476291500883 7

399 .156919651325

7

4

-1

0.864

0.892

-0.918

89.5

59.4

351

 

7

4

0.894834165325891895

-0.951860705585135952

0.894194460202712894

89.4956876275135

59.4342800786908 350.910943247122 .4

351

8

4.5

-1

0.884

0.888

-1.01

70.9

42.2

313

 

8

4.5

0.906475253699557906

-1.0432330433276704

0.88699005785024887

70.92241915934469

42.2148824089728 312.992004152579 2

313

9

5

-1

0.879

0.872

-1.08

57.3

30.5

283

 

9

5

0.917140610429364 917

-1.08867663568657 09

0.893779632076047 894

57.2968574266249 3

30.4851790719122 282.652362917002 .5

283

10

5.5

-1

0.887

0.878

-1.12

47.1

22.6

258

 

10

5.5

0.902963257559623 903

-1.12874378525066 13

0.876283735962727 876

47.0867813585159 1

22.5831735990022 257.887940247821 .6

258

11

6

-1

0.872

0.864

-1.14

39.3

16.8

237

 

11

6

0.893657667984861 894

-1.138641996747 14

0.872082886273499 872

39.2934112572874 3

16.7925249162364 8

237 .362271809525

12

6.5

-1

0.853

0.849

-1.16

33.2

12.5

220

 

12

6.5

0.877096891199445 877

-1.16563222664169 17

0.860765166816465 861

33.2467401837027 2

12.5431252833217 5

220 .116544465302

13

7

-1

0.849

0.857

-1.16

28.5

9.75

205

 

13

7

0.867836927064159 868

-1.17261710771242 17

0.86332246600206 863

28.4861111749774 5

9.75194877632007 75

205 .448215921732

14

7.5

-1

0.836

0.861

-1.16

24.7

7.44

193

 

14

7.5

0.868548947706417 869

-1.15942033025233 16

0.888456324814093 888

24.6879610646154 7

7.43724266918352 192.83304720061 .44

193

15

8

-1

0.831

0.873

-1.15

21.6

5.73

182

 

15

8

0.85993341256465 86

-1.14979252940141 15

0.889730024616774 89

21.6207148555113

5.72770680062926

181.87355758458 .6

5.73

182

16

8.5

-1

0.807

0.87

-1.15

19.1

4.43

172

 

16

8.5

0.839526774373017 84

-1.1454863855111 15

0.889555649590024 89

19.1158525842939 1

4.42968785517107 43

172 .264089318976

17

9

-1

0.78

0.858

-1.14

17

3.49

164

 

17

9

0.828450334938823 828

-1.12976930526696 13

0.896114026911798 896

17 .0489014282755

3.48574207332117

163.766610421789

3.49

164

18

9.5

-1

0.792

0.889

-1.11

15.3

2.75

156

 

18

9.5

0.824533609394867 825

-1.10327784158547 1

0.912422650093755 912

15.3266812705319 3

2.74605181254734 75

156 .193631947154

19

10

-1

0.782

0.906

-1.09

13.9

2.18

149

 

19

10

0.805943284944799 806

-1.08884406876998 09

0.914807175372563 915

13.8785832450612 9

2.18328519701562 18

149 .395941841956

20

10.5

-1

0.759

0.897

-1.07

12.7

1.74

143

 

20

10.5

0.800039898486579 8

-1.0763656575682 08

0.920931944553393 921

12.6505039786172 7

1.74424089765862 74

143 .266795277355

21

11

-1

0.747

0.902

-1.06

11.6

1.4

138

 

21

11

0.788808310243576 789

-1.05656008289991 06

0.933254569845571

11.6005616530767

1.40321696471758

137.745622540377 933

11.6

1.4

138

22

11.5

-1

0.752

0.914

-1.04

10.7

1.14

133

 

22

11.5

0.779205608927366 779

-1.03924741920651 04

0.935482608107987 935

10.696027985041

1.14073738236037

132.707798864861 .7

1.14

133

23

12

-1

0.743

0.924

-1.01

9.91

0.926

128

 

23

12

0.779321654012786 779

-1.02460870779617 02

0.947336705575843 947

9.91110282257499 91

0.925552317403238 128.118730788473 926

128

Both algorithms try to find the lowest power whose R^2 is above the given threshold (0.90).  If no power achieves the threshold then the threshold is decremented repeatedly by 0.05 until a solution is found.  Since the Sage version finds a maximum of 0.887, it carries out the decrementing procedure.  The UCLA version finds three values just above 0.90, and picks the lowest.