...
In this example, we are not using MapReduce to its full potential. We are only using it to run jobs in parallel, one job for each chromosome. The phase algorithm from UW writes its output to local files instead of stdout.
Mapper
Code Block |
---|
~>cat phaseMapper.sh #!/bin/sh RESULT_BUCKET=s3://sagetest-YourUsername/results while read S3_INPUT_FILE; do echo input to process ${S3_INPUT_FILE} 1>&2 # For debugging purposes, print out the files cached for us ls -la 1>&2 # Parse the s3 file path to get the file name LOCAL_INPUT_FILE=$(echo ${S3_INPUT_FILE} | perl -pe 'if (/^((s3[n]?):\/)?\/?([^:\/\s]+)((\/\w+)*\/)([\w\-\.]+[^#?\s]+)(.*)?(#[\w\-]+)?$/) {print "$6\n"};' | head -1) # Download the file from S3 echo hadoop fs -get ${S3_INPUT_FILE} ${LOCAL_INPUT_FILE} 1>&2 hadoop fs -get ${S3_INPUT_FILE} ${LOCAL_INPUT_FILE} 1>&2 # Run phase processing ./phase ${LOCAL_INPUT_FILE} ${LOCAL_INPUT_FILE}_out 100 1 100 # Upload the output files ls -la ${LOCAL_INPUT_FILE}*_out 1>&2 for f in ${LOCAL_INPUT_FILE}*_out do echo hadoop fs -put $f ${RESULT_BUCKET}/$LOCAL_INPUT_FILE/$f 1>&2 hadoop fs -put $f ${RESULT_BUCKET}/$LOCAL_INPUT_FILE/$f 1>&2 done echo processed ${S3_INPUT_FILE} 1>&2 echo 1>&2 echo 1>&2 done exit 0 |
...